在吃香中,在进行探索的过程中,离不开一些解谜的环节,不过该游戏更有意思,其中三道题目直接出了一道微积分的题目,证明函数y=cosx=tan2x的值域是所有实数,增添了不少游戏乐趣以及难度。
吃香游戏微积分怎么解
1、游戏中,我们在进行探索的过程中,离不开一些解谜的环节,其中三道题目就包括一道微积分的题目。
2、该题目是一道证明题,证明函数y=cosx=tan2x的值域是所有实数,具体解法如下。
函数y=cosx的定义域是:{x|x∈R}(全体实数)。
tanx的定义域为(kπ-π/2,kπ+π/2),其中k∈z.则令kπ-π/2<2x
可以求得x∈(k/2-π/4,k/2 + π/4),这里已知定义域表示方法有不等式、区间、集合等三种方法。
可以设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应。
那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
ps:其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3、关于四大力学的题目,这里的答案是理论力学、电动力学、量子力学、经典牛顿学。
4、第三题是本征态中的能量是否有一定确定值,答案是在本征态中能量一定有确定值。
吃香游戏微积分解法的全部内容就介绍到这里,更多吃香相关攻略正在添加中,敬请期待!